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Expected mean-square errors in the experimental electron density at a point in a crystal are discussed 
and compared with errors in a mean electron density or electron count obtained by integration over a 
parallelepiped in the crystal. That the mean density is more dependent on the low-order reflections 
emphasizes the importance of accurate low-order data for obtaining precise electron counts. The mean 
density is rather insensitive to changes in the temperature factors. It is therefore especially attractive 
for the calculation of difference maps where errors in the temperature parameters used in calculating 
Fc may introduce false detail. Numerical examples for a one-dimensional model system are given. 

Introduction 

The recent interest in deviations from spherical sym- 
metry of the atoms in a molecule due to bonding and 
the resulting controversy between so-called 'electron 
seers' and 'non-electron seers' have indicated the need 
for a precise assessment of the significance of residual 
features in electron density maps. 

The average expected mean square error in the elec- 
tron density in the unit cell hos been given by Cruick- 
shank (1949) as 

1 
az(Q) = V2 f aZ(Fh) (la) 

where aZ(Fh) is the variance of the observation F h. The 
volume of the unit cell is V. For  testing the significance 
of  a model for the structure by calculating a difference 
density AQ =Qobs--~oeale we have similarly: 

crZ(Ao)= 1 Za2(Fu). (lb) 
V 2 h 

The summations extend over all reciprocal vectors h, 
and the terms in the series beyond the data termination 
must have a2(Fh) replaced by the expected value of F~.t 
In many applications in the crystallographic literature, 
only terms for the observed data have been included 
in equations (1); this is of course incorrect in that  it 
leads to the false notion that the greater the number 
of  data points the greater is the error in the electron 
density. 

A more useful error function describes the error at 
specific points in the unit cell (Cruickshank, 1965). 
Such a function can be used to estimate the significance 
of  features in difference maps attributed to overlap 
populations and lone-pair electrons. 

* Research performed under the auspices of the U.S. Atomic 
Energy Commission. 

t Alternatively the calculated values of Fh may be used for 
these terms in the Fourier series. This requires an estimate of 
o'(Feale) for application of (lb). 

More interesting than the electron density at a cer- 
tain point is the density integrated over a small volume. 
How many electrons, for example, are contained in a 
peak observed in the center of a C-C  bond in a dif- 
ference map? A formula for such an electron count 
and a formula for its estimated error are given below. 
This electron count may be divided by the volume of 
integration to obtain a mean electron density and it 
will be shown that the mean or average electron den- 
sity can be evaluated with about the same accuracy 
as the electron density itself. 

The error in the electron density as a function of  position 

The electron density in the general case may be eval- 
uated as 

Q(r) = 2 X IFhl cos 2zc(h.r--~0h)* (2) 
W- h>0 

where r indicates a vector in the unit cell and ¢Ph is 
the phase of the structure factor Fu, whose real and 
imaginary parts will be denoted Ah and B h. If we define 

AQ ---- Qobs -- Qtrue (3) 
and 

AIFI = IFlobs-IFItrue (3) 

we may write 

A~(r) = 2 Z AlFhl cos 2u(h.  r-~0~), (4) 
V hzO 

where we have assumed that the error in phase angle 
is negligible (see Cruickshank, 1949). The mean square 
error az(Q) in the electron density is defined as the ex- 
pected value of (AQ)2; thus 

4 
- z z E{AIFhlAIFh,  I} a 2 ( e ) -  E{(3e)2} V2 h>_0 h'~0 

x cos 2n(h. r -  q~x) cos 2~z(h'. r - ~0~, ). (5) 

* By h>_0 we mean that the summation is taken over one 
half of reciprocal space, that is, only one member of each 
Friedel pair is included and F(0, 0, 0) is given weight ~-. 
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If the reflections in a whole hemisphere of reciprocal 
space have been collected, we may assume a probability 
distribution of the errors such that AFh and AF h, are 
statistically independent: 

E{AFhAFh,}=O if h e h '  (6) 

E{AFhAFh,}=a2(F~) if h = h '  

and we obtain 
4 

= ,S a2(Fk) cos22n(h, r-rp~).  (Ta) a2{~°(r) }  --~- h_>0 

For computational convenience this may be rewritten 
as: 

¢~{~o(r)} ~ 27 a~(F~) [ A~ 
= V 2  h > _ 0  \ iFh[ 2 cos22zrh, r 

2 2A& ) 
+ IF~I z san 2 n h .  r + i - - ~ l - 5 - c o s 2 n h . r s i n 2 n h . r  (7b)  

or 

4 { A h c o s 2 n h . r + B h s i n 2 n h  r}  z *  
V ~ ~>_027 a(F~) IF.I " , (7c) 

which in the centrosymmetric  case reduces to:  

4_4 X aZ(F~) cosZ2nh, r .  (7d) 
az{0(r)} = V z h_>O 

The  ef fect  o f  s y m m e t r y  on the error in 0 

The presence of symmetry elements other than a center 
of symmetry introduces well known relationships be- 
tween structure factors. The Fourier summation can 
then be obtained with less than a hemisphere of data. 
Cruiekshank & Rollett (1953) pointed out that this 
results in larger errors at special positions (which are 
not necessarily positions of lower multiplicity). In space 
group Pro, for example, Fng~=Fh~z, and therefore, if 
only one reflection of this pair has been measured 
A(Fn~)=A(Fhra). This correlation gives rise to a cross 
term in expression (5), which averages to zero at all 
but the special positions. It is worthwhile to note that 
this increase in the standard deviation at the special 
positions is eliminated when a full hemisphere of data 
is collected. 

The  integrated e lectron density 

A pertinent expression for the density averaged over 
a cubic volume has been given by Weiss (1966). For 
a cube centered at the point (x,y,z) with edge 6 the 
mean electron density is 

1 
fi(x,y,z,5) = --~ X X X Fn~ exp ( - 2 n i h .  r) 

h k l  

sin nhd/a sin nkf /b  sin nlfi/c 
x nhfi/a nk~/b nlS/c (8) 

* Dr E.N. Maslen, University of Western Australia, has 
pointed out that this expression excludes errors in the scale 
factor k, which add a term k-Zaa(k)o(r)2. 

This expression may be generalized as follows: sup- 
pose we are interested in the average density in a 
parallelepiped centered at the point (x,y,z) with edges 
of length 6~,da, fi3 in A parallel to the unit vectors 
ua,u2,u3, such that u~ =ai~a+ai2b+ai3c, where the vec- 
tors a,b,e are the crystal axes of length a, b, and c 
respectively. 

Triple integration of the usual expression for the 
Fourier summation leads to the following result for 
the electron count in the parallelepiped: 

Oint(X,Y, Z, ~1, ~2, ~3) 

A V  
- -  X 27 Z' Fhla exp(-- 2hi h. r)S(cq)S(a2)S(cq) (9a) 

V h k l  

with 
sin c~i 

S(~O - - - - ,  ~ = (ha~ + kava + la~3)n& (9b) 

and A V is the volume of the parallelepiped. Dividing 
by A V we find for the mean density in the parallepiped 

p(x, y, z, dl, ~2, d3) 

1 
- 27 27 X Fn~z exp ( - 2 n i h .  r)S1S2S 3 .* (10) 

V h k l  

Thus the contribution of each term in the conven- 
tional summation for the electron density is multiplied 
by $1S2S3. The function Si = sin ai/0~ is plotted in Fig. 1. 

* Kurki-Suonio (1959) has considered the structure am- 
plitude fT(h) of a volume T centered at the origin. Expression 
(10) equals fT(0) in the case where Tis a parallelepiped at r---0. 
It follows from the expression derived by Kurki-Suonio that 
the mean density in an ellipsoid centered at (x,y,z) with 
principal axes dhu~ is: 

p = 3/V X 27 27 Fh~z exp (-- 2nih. r) (sin x--x cos x)/x 3 
h k l  

in which 
x=al/Na~z. 
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Fig. 1. The function sin a/~. 
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For ~t = n, which corresponds to (hail + kai2 +/al3)51 = 

1, S~ is equal to zero. Physically this means that the 
period of the wave hkl in the direction u~ is the same 
as the dimension of the parallelepiped in this direction. 
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Fig. 2. Electron density, mean density and associated errors 
in a one -d imens iona l  uni t  cell of  10 A length  con ta in ing  two 
a t o m s  ( B =  1.0/1,2). (a) e r ror  curve for  c1=0 ,  c2=0"05.  (b) 
e r ror  curve for  c1=0 .03 ,  c2=0"05.  (c) Elec t ron density.  
(d), (e), ( f )  C o r r e s p o n d i n g  curves for  the densi ty  averaged  
over  boxes of  0-5/~  length.  

The contribution of this wave to the integrated density 
is therefore zero. It can be shown easily that for a 
parallelepiped with maximum dimension t~max, ~ will 
always be smaller than n if 2Jmax is smaller than the 
wavelength of the radiation employed. 

The shape of the function S indicates that generally 
less weight is given to higher order reflections in the 
summation (10), although the weight increases again 
for high order reflections for which c~ exceeds n. This 
occurs when a large parallelepiped is chosen or a very 
short wavelength is used. 

The error in the integrated electron density 

The error in the function (10) can be derived by the 
methods discussed in the second paragraph. With the 
same assumptions we obtain, analogous to (7), 

4 S, o'2(FIOS~S~S] 0"2(p(r)} = ~ h_>O 

× [ Ahcos 2nh. r+Bh sin 2nh. r ]  z l F h l  , (11) 

which reduces to 

a2{fi(r)}= Z ~ z 2 2 2 a (Fb)S1S2S 3 cosZ2nh, r 
h>_0 

for the centrosymmetric case. 
For J1--Jz=~3=0,  ~, r-'2"-'3qaq2q2 equals 1 and (11)reduces 

to (7). For ~t # 0, however, each term in the summation 
is multiplied by the corresponding value of q2~2q2 

~" 1 ""  2" - '  3 ,  

which decreases rapidly with increasing J. Thus, the 
error in the mean electron density will be less depen- 
dent on the accuracy of the high order reflections. In 
addition, since every term in (10) is multiplied by 
$1S2S3 series termination errors in/7 will be relatively 
small. This is of considerable importance. 

The error in the observations 

The application of the error formulas (11) and (7) 
hinges on the estimate of the errors aZ(F) in the obser- 
vations. For diffractometer data, it is often found that 
expressions like 

a2(I -  B) = I + B + cZ(I-  B)2 (12) 

are suitable. (See e.g. Coppens & Schmidt, 1965.) I is 
the measured intensity and B is the background. The 
term I + B  is due to the counting statistics, while the 
second term is an empirical one which includes most 
other errors. An additional term representing uncer- 
tainty in absorption and extinction corrections may 
also be appropriate. The constant c may be estimated 
from measurements of symmetry related reflections or 
by analysis-of-variance at the conclusion of the refine- 
ment. It is typically found to be in the range 0.02-0.10. 

aE(F) can now be derived from a2(I - B). As stated 
earlier, terms in the series beyond termination should 
be taken into account. Possible extinction should be 
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corrected either by calculation or by collecting data 
on crystals of different sizes. The assumption that a(Fh) 
is statistically independent of a(Fv) used in the deriva- 
tion of (7) and (11) is not valid if extinction or other 
systematic errors are not properly allowed for. 

Numerical calculations 

Calculations were performed on a one-dimensional 
model system with point atoms having non-zero tem- 
perature factors. The decrease of the atomic form fac- 
tor with (sin 0/2) 2 was thus approximated by an ex- 
ponential. 

Structure factors were calculated and used in calcu- 
lating the electron density 0, the mean density/~ and 
the corresponding errors. The error in F was obtained 
from: 

a(F) = (elF 2 + c~)1/2 . (13) 

This expression is analogous to (12) from which it may 
be derived by replacing (I+B) and ( I - B )  by F 2 and 
noting that 2Fa(F)~_a(F2). The following examples 
illustrate some of the results. The unit cell has a length 
of 10 fi  while the maximum h index is 39 (complete 
'sphere' for 2=0.5  fi). However, the examples with 
large temperature factors have very small high order 
reflections; they are therefore representative for ex- 
periments in which more common X-ray wavelengths 
> 0.5 f i  are used. It should be noted that inclusion of 
39 terms for the 10 fit cell makes series termination 
effects very small in all examples discussed below. 

1. Influence of the distribution of the errors in F 
Two atoms with 6 and 3 electrons respectively are 

placed in the unit ceil 2 f i  apart. 

Case A :  ca = 0.00, c2 = 0.05 (constant errors); B = 1.0 
fi2; box size for integration 0.5 f i  

Case B: as A but with cx=0.03 and c2=0.05. 

The results shown in Fig.2 indicate that the errors in 
both 0 and p are peaked at certain positions in the 
unit cell, especially at the atomic centers and at the 
midpoint of the two atoms. The peaks are about 40% 
above the average error, indicating that the errors are 
fairly constant. In more complicated three-dimensional 
structures with more data the errors can be expected 
to vary even less. Therefore average formulae like (la) 
seem to be adequate for routine structure work. 

At first sight it seems curious that the periodicity of 
7r in the error function is equal to half the periodicity 
in 0. The reason becomes apparent on noting that the 
squares of the trigonometric function appear in equa- 
tions (7) and (11). 

Case A. For constant values of a(F), ~ is consider- 
ably more accurate than 0. As was stated above, the 
relative contribution of the strong low order terms is 
larger in/~. If  the constant error assignment is correct, 
the strong reflections are relatively more accurate, and 
accordingly p can be evaluated more precisely than 

can 0- This once again illustrates the need for accurate, 
extinction-free, low order data when electron distribu- 
tions are to be studied. 

Case B. The error in p is generally smaller than the 
error in 0, but the 'signal to noise ratio' #/a(fi) is at 
the peak positions smaller than the corresponding value 
for the conventional unintegrated map. This was found 
to be true for values of cx ranging from 0.01 to 0.1 
and for the somewhat more complicated model of exam- 
ple 4. 

2. Influence of the temperature factor 
The calculations described in the preceding para- 

graph were repeated with B =  1.1 A 2 and B=3.0  A 2 
for both atoms (Fig. 3). At the atomic positions d~/dB 
is much smaller than do/dB. The peak heights for the 
heaviest atom are, for example, 21.2, 20.2 and 12.3 
e.fi -1 for B =  1.0, 1.1 and 3.0 fi2 respectively. The cor- 
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Fig. 3. As in Fig.2(b), (c), (e), ( f )  but with B=3"0 A -2. (a) 

Error in the electron density. (b) Electron density. (c) Error 
in the mean density. (d) Mean density. 
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responding values for/~ are 11.7, 11.6 and 9.6 e.A -1. 
The integrated electron count differs from ~ by a factor 
equal to the size of the box, and is therefore equally 
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Fig. 4. One-dimensional unit cell with 3 heavy atoms and 2 light 
atoms (B = 1.0 Zk2), Cl : 0.02, C2 = 0"05. (a) Error in electron 
density and difference density. (b) Electron density. (c) 
Difference electron density with light atoms only. (d), (e), (f) 
Corresponding curves for the density averaged over boxes of 
0.5 A length. 

insensitive to variations in B. This is important  in dif- 
ference maps in general, and in particular in combined 
X-ray and neutron difference maps. In the latter case 
the electron density calculated with the neutron par- 
ameters may be subtracted from the observed X-ray 
density (Coppens, 1967). Such an ' F x - F l v  synthesis' 
is subject to both errors in the X-ray structure factors 
and errors in the neutron parameters used in the cal- 
culation of F~v. Obviously, errors in the neutron tem- 
perature factors are less effective in the integrated dif- 
ference map than in the conventional difference map. 

3. Variation in box size 

The calculations described under 1 and 2 were re- 
peated for a box of 0.2 A length. As expected the results 
are intermediate between those obtained without inte- 
gration and those obtained by integration over 0.5 A. 

4. Errors in a difference map 

In these calculations two light atoms with 0.5 elec- 
tron are placed at x = 0 . 0  and x=0.24 .  B =  1.0 A 2. 
Heavier atoms are at 0.90 (30 electrons); 0.10 (15 elec- 
trons) and 0.22 (10 electrons). Both an electron density 
map and a difference density map are reproduced in 
Fig. 4, Cl = 0.02, c2 = 0.05. As indicated by (lb) the errors 
in a difference density are the same as the errors in Q.* 
There is no definite relationship between the amplitudes 
AF and their standard deviations a(F), as the latter are 
derived from F rather than from AF. The error curve 
is therefore peaked at positions which are not related 
to the position of the peaks in the difference map. 

Conclusion 

The expressions for the mean electron density (10) and 
its error (11) can be readily evaluated. It  is recom- 
mended that they replace the conventional summation 
whenever the interest is in the quantitative electron 
count. A modified version of the A.Zalkin Fourier 
program F O R D A P  based on (10) has been written and 
is presently in use in our laboratory. 
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